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ABSTRACT
Current use cases for drones often involve a remote human operator and/or an environment which
is inaccessible to humans. Social drones, which we define as autonomous drones that operate in
close proximity to human users or bystanders, are distinct from these. The design of social drones,
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in terms of both aesthetics and behavior, can involve particular human factors that require further
study. Currently, in lieu of empirical studies with autonomous embodied agents, approaches such as
Wizard of Oz methods, questionnaires, videos, and/or makeshift mechanisms are often employed to
investigate interactions with social drones. For empirical design research using embodied, co-located
drones, we have been developing an experimental setup that enables high precision drone control,
as well as rich multimodal data collection and analysis, in an integrated fashion. We present this
apparatus and its rationale in this paper. Using this setup, we aim to advance our understanding of
the psychology and ergonomics of interacting with autonomous social drones through experiments,
and extract design implications.

KEYWORDS
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INTRODUCTION

Figure 1: We use the term social drones
for applications where an autonomous
drone operates in an inhabited environ-
ment. (Figure from [7].)

In the near future, the drone has the potential to become a paradigm of human-computer interaction in
itself [7, 13]. Taking advantage of the drone’s ability to maneuver beyond human reach, many current
use cases for drones involve a remote human operator and/or an environment which is inaccessible to
humans (see [1, 12, 24]). Conversely, drones may also operate autonomously in close proximity to
human users or bystanders (see Figure 1). We use the term social drones to describe this emerging class
of applications [7]. Design and development in the context of social drones requires foregrounding
human factors, some of which may not have been consequential when a drone is under human control
or operating in uninhabited environments.
In previous work, researchers have investigated various aspects of the experience of interacting

with social drones, considering the influences of various design dimensions on human experience
outcomes (see [7] for a review). However, even though these studies aim to find out more about
interaction with embodied autonomous agents, in many of these cases, researchers have not carried
out studies using actual autonomous drones. Instead, many studies rely on other techniques: e.g.
Wizard of Oz (WoZ) methods, questionnaires, virtual reality (VR), videos, and makeshift mechanisms.
In turn, empirical design research with embodied prototypes can yield sophisticated insights into the
psychology and ergonomics of interacting with social drones. To be able to conduct such studies, we
have designed and implemented an experimental setup for real-time drone control and multimodal
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data collection in tandem. In this paper we present the rationale for this design, provide a description
of the setup itself in sufficient detail for researchers looking to implement one like it.

RELATEDWORK ANDMOTIVATION
In empirical design studies1[-5cm], there must be congruity between study methods and the purpose1“According to one definition, empirical means

originating in or based on observation or experi-
ence” [23]. In the context of this paper, we use
the term “empirical studies” to denote studies
that involve collecting data from (i.e. observ-
ing) human participants. In addition to con-
trolled experiments, this includes “interviews,
field investigations, contextual inquiries, case
studies, field studies, focus groups, think aloud
protocols, storytelling, walkthroughs, cultural
probes, and so on” [23].

of the study (e.g. the design stage being addressed). For example, online surveys and various flavors of
brainstorming, which rely on participants’ faculties of imagination and articulation, can cater to earlier
stages of design characterized by exploration, ideation, and lower-fidelity prototyping. Conversely,
experiments with embodied autonomous agents are apt for evaluating design ideas at a higher-fidelity,
e.g. capturing correlates of different aspects of the human experience and ergonomics, and efficiently
uncovering quantitative design parameters.
Empirical studies with social drones could be said to have emerged as a sub-genre of research

literature in more recent years, due to the availability of drone platforms as a consumer commodity.
Examining a diverse and representative selection of works from this body of works, we have identified
three main strands (see [7] for more detail). The first relates to more general issues of human-drone
communication and user experience with social drones [9, 11, 16, 26, 27, 32, 32, 35]. Here, researchers
have addressed high-level drone control by co-located humans (as opposed to real-time low-level
piloting), conveyance of drone intentions and state through various modalities including motion
qualities, and perceptions of comfort and safety in human-drone interactions; aiming to uncover design
parameters for intuitive and efficient human-drone communication. A second strand of research deals
with use cases involving navigation, assistance, and companionship; employing drones to improve
or augment experiences of outdoor wayfinding, exercise and sports spectatorship, and living with
sensory disabilities [4, 5, 10, 17, 20, 25, 28]. Finally, social drones have also been utilized to realize novel
interaction designs for implementing different flavors of mid-air displays, haptic feedback devices,
and interactive tangibles [2, 3, 8, 14, 15, 19, 29–31].
While the aforementioned studies are ultimately about interactions with embodied autonomous

dronesmeant to be co-locatedwith human users or bystanders, only aminority of the published studies
utilize actual autonomous drones [16, 18, 25, 33]. In lieu of such high-fidelity prototypes, approaches
reported in the literature include online surveys [10, 16, 17, 32], interviews (mostly semi-structured)
[3, 5, 9, 11, 16, 20, 28, 31], design studies (including a broad variety of approaches, e.g. ideation sessions,
focus groups, and expert critique) [17, 26, 35], WoZ studies [3–5, 9–11, 20, 26–28, 31, 32, 35], and user
studies in VR [17].

RATIONALE
As indicated above, empirical studies with social drones is a growing research agenda. However, in
the literature so far, studies with fully autonomous drone implementations are not as common as
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other kinds of studies. Our experience suggests that implementing drone behaviors and related data
collection in a robust manner can require engineering prowess and time, which may pose a high
barrier to entry for design researchers. In response to this issue, we aimed to construct and document
an apparatus which would be able to collect and respond to highly detailed, multimodal data while
implementing precise drone motion control. Based on our learnings from the literature discussed
above, and our prior experience with stimulus presentation and data collection apparatus in behavioral
experiments, we desired our setup to accomplish the following:
Drone control. The drones’ position, orientation, and velocity profile should be controllable, to an

appropriate level of precision, through pre-programming movement patterns and responding to events
in the scene (e.g. following a human subject or props) in real time. In other words, autonomous flight
must be possible, in lieu of a WoZ operator.
Drone capture. The setup should allow for recordings, at an appropriate precision, of the position,

orientation, and other relevant behavior of drones. For some studies, for example, a video recording
may suffice, but this must be synchronized with motion control to facilitate subsequent analysis.
Studies requiring high-precision data or efficiently looking for quantitative design parameters (e.g.
[21]) can benefit from more precise position tracking.
Human capture. It should be possible to record and respond to movements and other behavior of

human participants, at reasonable precision. Behavioral measurements may include sophisticated data
like motion capture, eye tracking, and physiological measurements (e.g. heart rate, skin conductance,
electroencephalography, and electromyography), but may also be due to simpler means—for example,
in studies on the psychology of musical perception, researchers have used simple linear potentiometers
to acquire real-time, continuous measurements of tension experiences [6, 34]. The overall system
must be able to accommodate and synchronize with such instruments.

Environment capture. The setup should be able to record and respond to any relevant happenings in
the environment, e.g. positions of props or different sensor readings. In the future we expect social
drones to surpass human sensory capabilities in many modalities, and communicate with other
devices more efficiently [13]. We wish to provide the means for incorporating such novel capabilities.

Figure 2: Our Crazyflie dronewithMoCap
marker deck andmarkers installed;Micro-
USB connector used to charge the drone is
in the background, for scale.

OUR APPARATUS
While many simple sensor systems may be used to control and record drone behavior, such solutions
often do not provide the flexibility we were aiming for, in that it is not straightforward to track
arbitrary configurations of drones, human subjects, and props within the same coordinate system
using such systems. Thus, we opted for an optical motion capture as the centerpiece of our control
and data collection apparatus.
We utilized a motion capture studio equipped with aQualisys2 system, including 12 high-speed2qualisys.com

marker cameras, 2 spatially calibrated video cameras, and Qualisys Track Manager software (QTM).
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Figure 3: We used optical motion capture to handle drone motion, human movements, and eye track-
ing within the same spatial coordinate system. This screenshot taken from the motion capture soft-
ware shows 6DOF tracking of the drone and the human head, point tracking of the hands and feet,
and the gaze vector from the eye tracker.

The system was readily configured for optimum coverage, mainly for biomechanics and animation
performance use cases. The total size of the room was 14m × 10m × 4m, while the motion capture
system was able track a capture volume of approximately 9m × 8m × 2m in the middle of the room.
This motion capture system was configured to track at 100Hz and used both for data collection and
closed-loop control of the drone.

Integration of the motion capture system and the drone was implemented in Python scripts using
the open-source cflib3 and qtm4 libraries. We have made these scripts available online as open source,3pypi.python.org/pypi/cflib

4pypi.python.org/pypi/qtm under a permissive license5.

5github.com/qualisys/crazyflie-resources
We used a Bitcraze6 Crazyflie 2.0 drones, with chassis dimensions of approximately 10 cm×10 cm×

6bitcraze.io
2 cm. Four spherical infrared-reflective motion capture markers, 9.5mm in diameter, were attached to
the drone using a “MoCap marker deck” fabricated from the same printed circuit board material as
the frame of the drone. QTM was configured to track this marker set in 6DOF as a “rigid body.” (As
an implementation detail, we note that proper 6DOF tracking requires the markers to be attached
asymmetrically.)

We incorporated a Tobii Pro7 Glasses 2 wearable eye tracker into our setup. This device was equipped7tobiipro.com
with 6 motion capture markers of the same size as on the drone, again configured for 6DOF tracking.
In QTM, gaze vectors for both eyes were overlaid onto the motion capture data (see Figure 3).
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Along with head and gaze tracking, attaching other markers to participants can provide information
on participants’ reflexive reactions to drone behaviors, and may be used to enable gesture control or
other responsive drone behaviors. In addition to motion tracking, we incorporated a wired trigger
button used to obtain binary input and record it with precise timing. This button was connected
directly to the motion capture system on a hardware level to minimize signal latency.
Finally, we considered safety measures. Our experience has been that our drone is small and

lightweight enough to be incapable of damaging clothes or skin upon contact. To protect participants’
hair from possible contact with the drone’s propellers, we procured a hair net. Eye protection was
provided by a clear plastic attachment fitted onto the eye tracker.

EXPERIENCES, LIMITATIONS AND FUTUREWORK
A subset of the apparatus we propose in this paper has been used to implement a technical demon-
stration that explores how a small drone can be used to facilitate meditative movement exercises [22].
We also note that fundamentally similar equipment has been used by other researchers to prototype
and demonstrate free-flying tangible user interfaces [15, 29].
Our preliminary work with the apparatus has revealed a set of improvement possibilities. So far,

we have only been using the Crazyflie drones, which are smaller compared to drones used in much of
previous work, and thereby have limited use cases. Future work can address developing the software
to integrate different drones in the setup, and identifying different use cases where the smaller
drone is more appropriate. Furthermore, while the particular motion capture system we had at our
disposal has advantages in terms of precision and flexibility, such systems are costly. Systems with
different cost/performance characteristics can be substituted in its place, but the software will need
to be reworked—a more general software framework to interface motion tracking, drone control, and
other systems can be explored in future work. Lastly, future work can also investigate adding further
data acquisition capabilities. For example, sensors for recording electrodermal activity (a.k.a. skin
conductance or galvanic skin response) or other physiological measurements could be introduced.

CONCLUSION
In this paper, we have presented our design and implementation of an experimental apparatus for
empirical research on human factors in social drones. This apparatus supports integrated multimodal
data acquisition at high spatial and temporal resolution, and real-time closed-loop drone control
with high precision. Here, along with details of the setup itself, we reported on its design rationale
and how various aspects of it relate to previous work. Through this report, we have aimed to share
a description of our apparatus at some detail, in order to serve as a resource for other researchers
looking to undertake similar studies. We would also like to open up our approach to critique; and we
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invite others in the field to provide feedback and share experiences regarding how future work on the
apparatus can better serve the community.
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